CHROM. 13,769

Note

Essential oil composition of Aframomum korarima

TESFAYE BIFTU* Department of Chemistry, Addis Ababa University, Addis Ababa (Ethiopia) (Received March 3rd, 1981)

Aframomum korarima (Per.) Engler, family Zingiveraceae, is a perennial plant endemic to Ethiopia¹. Its seeds, which are brown and shiny, have a diameter of 3–4 mm, and have a strongly aromatic but slightly burning taste that could be matched closely to Indian cardamoms.

Cufodontis¹ reported that the name for the spice crop in Ethiopia is Aframomum korarima (Per.) Engler and that the name A. angustifolium Schum has been used by the Kew Herbarium and by Mooney², but that he himself had seen no specimen corresponding to A. angustifolium. A. angustifolium has been used interchangeably with A. korarima by Mooney². It therefore seems that A. angustifolium was used in error and further studies by Cufodontis on the plant in Ethiopia around 1969 seem to have established that the two species are distinct.

Aframonum spp. yield the rarer essential oils applicable in perfumery³, but little chemical analysis on the essential oils of these species has been carried out. The oil of *A. amoniense* ("natural geraniol") from Tanzania was reported to have constituents similar to those of commercial geranium oil⁴. Analysis of the oils of *A. mala* and *A. amaniense* by Lee and Worsely⁵ showed that it was composed of kajene, caryophylene, β -pinene, terpineol, cineol, geraniol, geranyl acetate and other unidentified compounds. The composition of the essential oil of *A. angustifolium* was studied by Coomes *et al.*⁶, who reported the results of the analysis of seeds collected from Tanzania. The seeds were found to contain 1.1% of volatile oil and the constituents identified were α -pinene (9.9%), β -pinene (22.8%), limonene and dipentene (8.4%), cineole (18.1%), alcohols (10.7%), sesquiterpenes (12.6%) and esters (1.4%).

This paper reports the results of the gas chromatographic (GC) and gas chromatographic-mass spectrometric (GC-MS) analysis of samples of *Aframonum ko*rarima Engler.

EXPERIMENTAL

Materials

Essential oil was obtained from *A. korarima* by steam distillation of commercial-grade seeds (moisture content 13.7%) from the Gamo-Gofa Administrative Region of Ethiopia.

^{*} Present address: Department of Chemistry, Brandeis University, Waltham, MA 02254, U.S.A.

NOTES

Gas chromatography

A Hewlett-Packard Model 5710A gas chromatograph equipped with a flameionization detector was used. The operating conditions that gave the best separation are shown in Table I.

TABLE I

OPERATING CONDITIONS FOR HEWLETT-PACKARD MODEL 5710A GAS CHROMATO-GRAPH

Stationary phase Solid support	Carbowax 20M (10%) Chromosorb W AW, DMCS treated, 80–100 mesh	
Column length	6 ft.	
Column diameter	1/8 in, O.D.	
Column material	Stainless steel	
Column temperature: Initial Final	70°C 200°C	
Programming rate	4°C/min	
Detector	Flame ionization	
Injection port temperature	200°C	
Detector oven temperature	200°C	
Carrier gas (N_2) flow-rate	66 ml/min	
Hydrogen flow-rate	33 ml/min	
Air flow-rate	330 ml/min	
Sample size	0.5 μl	

Combined gas chromatography-mass spectrometry

The GC-MS system was a Finnigan Model 3200 instrument equipped with a linear temperature programmer and a Model 6400 data system. The operating conditions of the GC-MS system are given in Table II. The ion beam current was recorded and used as the gas chromatography trace. Mass spectra (at 70 eV) corresponding to the peak maxima were recorded. Each component was identified by comparison of the retention times and mass spectra with those of standard samples.

TABLE II

OPERATING CONDITIONS FOR FINNIGAN MODEL 3200 GC-MS INSTRUMENT

Stationary phase	Carbowax 20M (10%)		
Solid support	Chromosorb W AW,		
	DMCS treated. 80-100 mesh		
Column length	6 ft.		
Column diameter	1/8 in. O.D.		
Column material	Glass		
Column temperature:			
Initial	70°C		
Final	200°C		
Programming rate	4°C/min		
Detector	MS ion beam detector		
Injection port temperature	200°C		
Carrier gas (He) flow-rate	ca. 40 ml/min		
Sample size	0.5 μl		

RESULTS AND DISCUSSION

The essential oil composition of *A. korarima* determined by comparison of retention data and MS fragments with those of authentic samples and the percentage composition calculated from peak areas are given in Table III.

TABLE III

ESSENTIAL OIL COMP	DSITION OF	AFRAMOMUM	KORARIMA
--------------------	-------------------	-----------	----------

Peak No.	Retention time (min)	m/e	Composition ($\%$)	Compound
1	2.22	136	2.2	α-Pinene
2	3.31	136	21.4	β-Pinene
3	3.64	136	0.9	Мугсепе
4	4.14		1.0	-
5	4.49	136	9.1	Limonene
6	4.86	154	33.9	Cineole
7	5.23	136	2.7	y-Terpinene
8	7.73		0.8	•
9	5.94		0.5	
10	9.78		0.3	
11	11.48		0.2	
12	11.91		0.4	
13	12.31		0.2	
14	13.36	154	3.2	Terpinene-4-ol
15	15.84	154	9.3	Terpinyl acetate
16	17.02		4.5	Geranyl acetate
17	19.52	154	3.9	Geraniol
18	28.06	204	5.4	(Sesquiterpene)

It was found that *A. korarima* yields a higher percentage of essential oil (3.2%) than previously reported by Coomes *et. al.*⁶ in other *Aframomum* spp.

GC analysis showed eighteen separate peaks and the major constituents (eleven peaks comprising 91.1% of the total) were characterized. Of these peaks, five were monoterpenes, two were monoterpene alcohols, two were esters, one was an ether and one was a sesquiterpene whose structure was not identified. The major components of the oil, cineole, limonene, terpinyl acetate and the pinenes, were present at approximately the same concentrations as in Indian cardomom seeds⁸. In addition, the difference in chemical composition between A. angustifolium and A. korarima indicate that the two species are indeed distinct.

ACKNOWLEDGEMENTS

The author thanks the Ethiopian Beverage Corporation and Manheimer Inc., New York, U.S.A., for supporting this project and Zimmerman Hobbs Ltd., Great Britain, for technical assistance. Dr. Twolde-Berhane G. Egziabher of the Biology Department of Addis Ababa University and Ms. Sue Edwards of the Institute of Agricultural Research are thanked for the identification of the plant specimens used.

NOTES

REFERENCES

- G. Cufodontis, Emmeratio Plantarum Aethiopine Spermatophyta, Jardin Botanique National de Belgique, Brussels, 1974, p. 1954.
- 2 H. F. Mooney, A Glossary of Ethiopian Plant Names, Dublin University Press, Dublin, 1963, p. 69.
- 3 A. Wagner, Soap, Perfum. Cosmet., 12 (1939) 685.
- 4 R. R. Lee and G. Worsely, Bull. Imp. Inst., London, 32 (1934) 195.
- 5 R. R. Lee and G. Worsely, Bull. Imp. Inst., London, 32 (1934) 253.
- 6 T. V. Coomes, H. T. Islip and W. S. A. Mathews, Colon. Plant Anim. Prod., 5 (1955); CA., 50 (1955) 436.
- 7 Y. Masada, Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry, Wiley, New York, 1976, p. 258.

•